Two Methods (1) Draw algebra tiles

$$
\begin{aligned}
& =+1 & \square & =-1 \\
& =+x & \square & =-x \\
& =+x^{2} & \square & =-x^{2}
\end{aligned}
$$

(2) Solve algebraically (use the distributive law)

Ex. Solve two ways:
(1) $2(x+1)$

$$
2 \cdot x+2 \cdot 1
$$

$$
2 x+2
$$

(2)

$$
\begin{aligned}
& (-2 x)(x+3) \\
& -2 x \cdot x+-2 x \cdot 3 \\
& -2 x^{2}+-6 x \\
& -2 x^{2}-6 x
\end{aligned}
$$

Use the distributive law, then simplify:
(1) $\left(5 x^{2}\right)\left(x^{2}-7 x\right)$

$$
\begin{aligned}
5 x^{3} \cdot x^{2} & -5 x^{2} \cdot 7 x^{1} \\
5 x^{4} & -35 x^{3}
\end{aligned}
$$

(2)

$$
\begin{array}{rl}
(x-5)(3 x) & \\
3 x)(x-5) \\
3 x-x-3 x \cdot 5 & 3 x \cdot x-3 x \cdot 5 \\
3 x^{2}-15 x & 3 x^{2}-15 x
\end{array}
$$

Rewrite If you want
(3)

$$
\begin{gathered}
2(x-3)+-3(x+5) \\
2 \cdot x-2 \cdot 3+-3 \cdot x+-3 \cdot 5 \\
2 x-6+-3 x+-15 \\
=-|x-2| \\
-x-2 \mid
\end{gathered}
$$

* order matters!

Highest degree $1 S^{T}$

Ex. Find the area of this shape:

$$
\text { Area }=L \times w \text { (Rectangle) }
$$

(1)

$$
\begin{aligned}
& A=L x \omega \\
& A=(x)(x+2) \\
& A=x^{2}+2 x
\end{aligned}
$$

(2)

$$
\begin{aligned}
& A=L \times \omega \\
& A=(3 x)(x+2) \\
& A=3 x^{2}+6 x
\end{aligned}
$$

Total

$$
\begin{aligned}
\text { Area } & =(1)+(2) \\
& =1 x^{2}+2 x+3 x^{2}+6 x \\
& =4 x^{2}+8 x
\end{aligned}
$$

