Introducing the Pythagorean Theorem

* For a Right - angle triangle:
- a and b are the 2 shorter sides and they are called "Legs"

a
- C is the longest side and it is called the hypotenuse
* If we draw 3 squares, one on each triangle side:

Area of small square plus area of medium square equals area of large square

$$
\left\{\begin{array}{l}
A+B=C \\
C-A=B \\
C-B=A
\end{array}\right\}\{\text { Have longest side }
$$

Ex. Find the missing area:
a)

$$
\begin{aligned}
& A+B=C \\
& 7+11=18 \mathrm{~m}^{2}
\end{aligned}
$$

b)

Ex Find the missing side length:
a)

$$
\begin{aligned}
& A: \quad 4.5^{2}=20.25 \mathrm{~cm}^{2} \\
& B: 6^{2}=36 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
A+B=C
$$

Area.

$$
\begin{aligned}
& 20.25+36=56.25 \mathrm{~cm}^{2} \\
& c=\sqrt{56.25}=7.5 \mathrm{~cm}
\end{aligned}
$$

Page 92 \# $4-6,8-10,12-13,15$

Introducing the Pythagorean Theorem

* For a right -angle triangle:
- a and b are the 2 shorter sides and they are called legs

- c is the longest side, the hypotenuse
* If we draw 3 squares, one on each side of the triangle:
 Area of small square plus area of medium square EQUALS the area of the Large square

$$
\left\{\begin{array} { l }
{ A + B = C } \\
{ C - A = B } \\
{ C - B = A }
\end{array} \left\{\begin{array}{l}
\text { Know largest } \\
\text { side/area }
\end{array}\right.\right.
$$

Ex. Find the missing area:
a)

$$
\begin{aligned}
& A+B=C \\
& 7+11=18 m^{2}
\end{aligned}
$$

b)

Ex. Find the missing side length:

$$
\begin{aligned}
& A: 2.5^{2}=6.25 \mathrm{~m}^{2} \\
& B: 6^{2}=36 \mathrm{~m}^{2} \\
& A+B=C \\
& 6.25+36=42.25 \mathrm{~m}^{2} \text { Area } \\
& C=\sqrt{42.25}=6.5 \mathrm{~m}
\end{aligned}
$$

